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k** = l,la (F + -42tir) + ABH (la - hIf @@ 

b lee + H (Ai% - B)a 

Figure 2 depicts the surface D,, = 
proach the critical value V’* 

f (k, v). When the velocities of motion ap- 
defined by the expression (1.2), the dispersion increases 

without bounds as the value of the leading Hurwitz determinant of the system appear- 
ing in the denominator of the expression for dispersion tends to zero, 
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ON THE CONSTRUCTION OF PLANE STATIONARY SOLUTIONS 
OP BACKS PC% ~~~ ~~~~~D ~~A 

1, If heat conduction and convestion are neglected, the problem of stationary dis- 
tribution of current in nonequilibrium plasma can be reduced to the problem of conti- 
nuous media electrodynamics with a nonlinear dependence of electrical conductivity 

and of the Hall parameter (Q) on the modulus of the vector of electric current den- 

sity PI. In the plane case this problem reduces to a quasi-linear equation of second 
order for the function of current or electrical potential [Z-4] (Eq. (3.1) below). When 

the Hall parameter exceeds a certain value which coincides with the Hall parameter 
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A method for determining stationary two-dimensional distribution of the ele- 
ctric current and electron temperature in none~ilibrium magnetized plasma 
is developed with heat conduction and convestion taken into account. Solu- 

tion is derived in the form of asymptotic expansions in a small parameter. 
Derivation of the zero approximation for the external and internal expansions 
is investigated. The problem of current dis~ibuti~ in a channel with infi- 
nite electrodes is considered as an example. 
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critical value for ionization instability, this equation changes from the elliptical to the 
hyperbolic kind [3-51. Transformation of the hodograph for Eq. (3.1) was used in [Z] 
forQ=li a,idin[6]forQ#O. Solutions of two problems in the elliptic region 

were derived in [6], and a numerical solution in the ellipticity regions appears in [S], 
In the case of small degree of ionization and constant Hall parameter the problem 

of current distribution in the hyperbolic region can be reduced to a first order equation 

whose particular solution was used in [4] for the channel of an MHD generator with sec- 

tioned electrodes, A similar solution can be derived by the method of characteristics 
[5]. It was shown in [7] that solutions obtained in [4,5] are nonevolutionary. Since 

heat conduction was not taken into consideration in f3-61, it was not possible to satisfy 

the conditions for the electron temperature. Experimental investigations of current 

distribution carried out in the channel of an MHD generator and in a discharge with 

external electric field are described in [8,9] and [4, lo] respectively. When the Hall 

parameter exceeds the critical value, the current distribution has the form of prolate 

layers (streamers) along the middle current. The time of streamer development is 

considerably shorter than that of the ionization instability. 
The solution of the problem of stationary plane current distribution in nonequilibrium 

plasma is considered here with allowance for heat conduction and convection. 
In the analysis of the plane stationary problem we take the coordinates x and y 

as the independent variables, and introduce the dimensionless parameters 

x++ y+= 3, (J’ = 
CJ (n,, Tel 

(3. (?a,‘, T,‘) ’ 
J++ = i>;;“;2).) 

6 8’ 8 (1.1) 

r, 0% T,) . 
z+ = ‘;(“;,“+) 9 ii+=+ Y+-, n+=$ 

F-U' kT l 
* 

F-+=7, e=L, I 
o=Re, dInz+ 

na 
a, = - 

dlnn+ 

where j is the density of the electric current; T, is the temperature of electrons 
and n, their concentration; u and &, are the coefficients of electrical and 

thermal conductivities of electrons, respectively; b is a characteristic dimension 
(e.g. , distance between electrodes); 1 is the ionization potential of the additive 

and n, is the initial concentration of the additive atoms. The transfer of energy 

from electrons to heavy particles is taken into account by function F . The stream 

function Y (2, y) is related to the electric current density by formula 

When the characteristic density of electric current j* is specified, the character- 

istic temperature T,* is determined by the equation 

F_ = 3/26kT,*ne* (T*) he*]+ = j*a [0*1-l (1.3) 
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where 6 = 2& / ma, Te is the time of energy transfer from electrons to heavy 
particles, and k is the Boltzmann constant. The electron ~oncen~ation and their 
temperature are assumed to be related by the equation n, = n, (T,) (e.g. , by 
the Saha equation) and T, > T,. 

If the electron heat conduction is determined only by the conductivity component 

and the effect of the magnetic field on it is negligible, and T, and rz, are linked 
by the Saha equation, the equation of electrodynamics and of energy for electrons 
(the complete system of equations appears in [ll] are of the form 

an2 
I= - cm 

uT31’ exp (- @l’-i) 

where a is a known constant, Q -= e f m,Bz, - B*a is the Hall parameter for the 
electrons, B is the magnetic field induction, and B = (0, 0, l3) , Since in 
what follows only dimensionless variables are used, the superscript plus is here and sub- 

sequently omitted. Unlike in [ll] a more complete representation of the convection 
term in the third equation of system (1.4), which is valid at complete ionization of 

the additive (a - 1) is used here. 

We seek the solution of system (1.4) in some region G, whose part GI of its 

boundary corresponds to perfectly conducting electrodes and part G2 represents in- 

sulators. At the electrodes and inlulators the following conditions must be, respect- 
ively , satisfied: 

E.xO = 0, j-no L 0 (1.5) 

where x” is a vector in the electrode plane and n” is a vector normal to the 

insulator wall surface. 
In addition, along the whole boundary G = G1 U G2 the relationship 

L (T, VT, j) = 0 (1.6) 

which links the electron temperature, its gradient, and the normal component of the 
electric current density, must be specified. 

The functional form of formula (1.6) at the electrodes and insulators may be differ- 

ent. However, all further investigations can be carried out without specifically de- 
fining the form of L. 

For the majority of real problems _j < 1. Since the parameter A appe- 
ars at the higher derivative, the solution of the input problem can be derived by the 
method of singular perturbations [12,13] according to which the general solution may 
be represented in the form of the external expansion 
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T= A'LTk(x, y), n = c m Aknk (x:, y) 
k==O k=O 

co 

Y= c Akyk (x9 y) 
k=O 

and of the internal one 

T = x O” Ak8k (x*, y*), j = 2 A’j,(X*, y*) 
k=O k=O 

(1.7) 

(1.8) 

EC c O” AkEk (x*, y*) 

k=O 

where x* = x / A, y* = y or x* = 5, and y* = y / A,. 

Expansiofi of the from (1.7) makes it possible to satisfy the boundary conditions for 
the electrodynamic variables (1.5); to satisfy conditions (1.6) it is necessary to use the 
internal expansion (1.8). 

2, Internal expansions used for deriving plane solutions in a closed region may be 
of different forms, viz. solutions of the kind of boundary layer at the walls; solutions 

of the kind of stationary ionization and a recombination of the additive in the inner 

channel regions, and solutions of the kind of two-temperature boundary layer for which 
an allowance for the finiteness of heavy particle temperature is essential. Solutions of 
the last kind occur when solutions at the current boundary region (T > T,) are joined 

with the region of equilibrium plasma (T - T,). 
We assume for the sake ofdefiniteness that the electrode plane lies in the xz -plane. 

Introducing the independent variables X* = 5 and y* = y / A), we substitute (1.8) 

into system (1.4), equate terms of like order with respect to A , and obtain (for the 

zero terms in expansion (1.8) ) the following system of equations: 

aEOX 
ay’= 0, $!=o 

(2.1) 
&, h. (0,) ;+ + U,, (0,) ‘6 + F PO> = 0 

F = &,o’i (&) [I + w (eo)l - F_ (eo), q, = - iOzl (Go- +) 

The first and second equations of system (2.1) imply that within the boundary layer 

E,, is identically zero (since at the electrode E, = 0), and io, is an arbitrary 

function that depends on x* and is to be determined by the construction of the com- 

plete problem (e.g. , the potential difference between electrodes or the equation of the 
electric circuit containing.the considered channel can be specified). In such case the 
derivation of solution for the boundary layer reduces to the integration of the equation 

of energy for the electrons, which is solved for y* + 00 with the following boundary 
conditions: 

e0(x*,y*400)-+To(x,y=0), ;+*o (2.2) 
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The second boundary condition is the condition at the electrodeL (Cl, (z*, y* = 0), 

afAl 
*t m,) = 0. 
3Y We assume that the specified distribution of electron tempera- 

ture over the electrode T,(z) is 

Lr&&“,O) - 1’i(X) =O (2.3) 

It follows from (2.2) that the external solution at Y = 0 must correspond to a singu- 
lar point of the third equation of system (2. l), i.e. , it is the zero of function F. In- 
side the boundary layer the temperature specified at the electrode asymptotically rea- 

ches the temperature at the core of the stream. 

For the boundary layer at the insulator wall whose plane is also in the zz -plane it 
is necessary to set U, = 0 and 

F (e,) = o (0,) &,x2 - F_ VA,) (2.4) 

This equation can be integrated 

f ccmst 

where Ts (5) is the specified temperature distribution on the insulation wall. 
Calculations can only be carried out for a specific plasma composition. Thus for 

argon with the addition of cesium function F has in the temperature range 109 - 104% 
a single zero To for any value of the variable jog (Es.). The related equilibrium 

point (To, 0) is a saddle point. The solution in the boundary layer corresponds to 

the separatrix oriented in the direction of decreasing (increasing) temperature when 

the wall temperature is higher (lower) than that at the boundary of the boundary layer 

(when y* --f 00 1. Since Uvat the anode and the cathode differs at least in their 

sign, the boundary layers at these are different. 

The problem of stationary ionization discontinuity surfaces (ID) also reduces to the 
integration of energy equations. In that case it is always possible to turn the input co- 
ordinate system (5, y) --+ (z*, y*) so as to have the y* -axis merge with the nor- 

mal to the wave surface. In the new system of coordinates all dependent quantities 
are functions of Y*. The first two equations of system (2.1) state the conservation of 
the tangent component of the electric field E,, and of the normal component of the 
electric current Jov. Function F is of the form 

F = jovac+ (1 + Q2) - 28j, yEOx + aEcx2 - F_ (2.5) 

In considering stationary ID we assume, unlike in [14], that the total current ji and 
the angle ‘pi between the normal to the wave surface (the y* -axis) the vector ji 

are specified upstream of the wave. 
The kind of equilibrium points, their number and subscript depend on ji, qr and the 

Hall parameter 52, = &2i (ji, B) upstream of the wave. These are linked to the 
. . current density joV and the electric field &, by the relationship 

JOY = jl cm 01, E,, = jlovl (sin ‘pl + Q1 cos cpi) (2.6) 
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Function F has always a single zero for any jr, ql and Q2, , which is deter- 
mined by the equation jlsoV* = F_ T ( 011 When 91 < si_ ( Q_(il\- m=rallY 
does not coincide with the critical Hall parameter for ionization instability) there are 
no other zeros except TOr for any angle ‘PI . 
two more zeros To, 

When Q $ & function F has 
and ros in the particular angle interval cp_ < rp < q+ 

(qua = vr (jr, QJ)and there always exists a region of angles ‘pr in the interval 
((p_, cp,) where points (2’01, 0) and (Tas, 0) are saddle points, and (TO,, 0) is 

either a nodal OK focal point, or a center, depending on the values of U, (To& 
(T*, -C To, -=z To,). 

Besides the solutions of system (2.1) considered in fl4,15] system (2. l), (2.5) admits 
yet one more solution of the hind of standing layer wave (ionization and recombination 
wave, with the state uptream of the ionization wave is the same as the state down- 
stream of the recombination wave). A closed separatrix which passes through points 

(TO,, 0) and (To,, 0) corresponds to it in the phase plane. The conditions of exis- 
tence of the layer wave can be formulated as follows: 

9 h(T)U,(T)$dT=O 
To* 

5 [ I Up $+F(T)]dT=O 
01 

For a specified magnetic field induction a layer wave can only be initiated for par- 
ticular values of angle ‘pI and current density jr . This property will be used in 
the construction of the general solution of the problem. 

The two-temperature boundary layer arises at the interface of region of high 
(?‘> T,)andlow (2’ N T,, n + 0) electrical conductivity, To construct such 

boundary layer it is necessary to use besides the equation of energy for the electrons, 
the equation of energy for atoms, which in the region of nonequilibrium plasma 
(2’ > T,) (in the absence of convective transport) can be represented in the form 

AI~VL (T,) VT, + F_ (To (5, y)) = 0 (2.7) 

where& = ~Z’,*l,%* (j*b)‘l, and & is the dimensionless coefficient of atomic 
thermal conductivity in the equilibrium region (2’ - T,, n * 0, o + 0) 

V [h (T,) + A, (T,)l VT, = 0 (2.8) 

In constructing the tw~tern~ra~~ boundary layer it is possible to use the approxi- 
mate procedure by expressing function F_ in the second of Eqs. (2.1) in the form 

F_ = m-l (T) (?’ - T,s) 

where Tn3 is the unknown temperature of atoms at the equilibrium zone boundary. 
This unknown temperature is determined by the solution of Eqs. (2.7) and (2.8) in its 
zone, and by the conditions of merging of heat fluxes at the interface (the atom tern 
perature may not have a boundary layer, while the latter exists for the electron tem- 
perature) 

Alah, (T,s) r&)+ $2 1 h(S) F (S) dS = 
Ta3 
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where d / r311 are derivatives along the normal to the discontinuity surface, no is the 
unit vector alon the normal in the direction of equilibrium plasma, and 

A, = 1p T,*o* (&* + a,*) (i*b)-i. 
Conditions of heat exchange must be used in the regions where equilibrium plasma 

zones adjoin the channel walls. 

8, Equations of the external expansion can be obtained by substituting (1.7) into 
system (1.4) and equating terms of like order with respect to A., The system of zero 
approximations formally corresponds to the disregard of convective and conductive 
heat transfer in the equation of energy for electrons, and all observations appearing in 

the introduction are valid in this case, The system can be reduced to a single equa- 

tion for function yy, (5, y), as was done in [4,5J 

aw, 
a11 a,z 

av’, 
+ al2 ax ay 

a2yo o 
+ a22ay2 = 

(3.1) 

1 + a, c2b,ayo auu, 
-jzazay 

az2 = 1 -$[(I +aT)(ff)2- 52 %%I 
bl = [; + (eT,r’] I]$ + (e&J-l -I- uq (1 - WJ-q -l 

where Q, b,, a, and TO are known functions of fj”. Equation (3.1) is equivalent 
to a system of two first order equations with respect to components of the current density 
vector 

(3.2) 

The equation of characteristics of system (3.2) is 

Equation (3.1) (or system (3.2) ) can be either of the elliptic (Q < 8,) or the 
hyperbolic@ > Q,)kind. 

The quantity 61, coincides with the critical Hall parameter for nonequilibrium 

ionization PS]. 

When Q > Q2, system (3.2) admits three classes of continuous solutions: a 
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homogeneous solution (R G cOnst), two singular solutions (simple waves or Riemann 
waves 07]), and a general solution. In the case of the singular solution the compon- 
ents of vector fi are intercoMected, i.e., jv = jg (jr). It corresponds to the 
degeneration of the image of the physical plane (2, Y) on the hodograph plane 

(ix, j,): d (j,, j,) / a (2, Y) f 0. Singular solutions of system (3.2) may be rep- 
resented in the form 

y - V&X = O&J, dj,ldj, = Q (3.4) 

where 0 is an arbitrary function of ix. 
Attempts at obtaining an analytic representation of the general solution for an arbi- 

trary dependence of coefficients aij on the electric current density were unsuccess- 
ful. However, for considerable Hall parameters the solution (zero approximation in 
the series expansion in the small parameter 1/ 62)can be constructed by the hodograph 

method PSI. 
In the hodograph plane (j,, jv) Eq. (3.1) may be written in the form 

(3.5) 

Mapping onto the physical plane is effected by the transformations 

x = NVaj,, y = -awaj, (3.6) 

The solution of Eq. (3.5) is obtained by the method of separation of variables, 
which yields 

(3.7) 

where p, and F, are arbitrary functions of rl and E , respectively. In the 
particular case of (F, G 0) the general solution i$ of the form 

q=--X/Y, E = F, (z” +y”) (3.8) 

and the streamlines are represented by concentric circles. 
As an example, let us consider the model of weakly ionized plasma with a predomi- 

nance of electron-atom collisions [4,5], which makes it possible to obtain analytic 

formulas for simple waves. Forsuchmodel b, +I, a, +O, 62, -to and 
Q = const. Setting 8, = 0 we obtain 

W iv - dy- i, - si, 
-= dz = Ix q’ dz = j,+Qj~ 

(3.9) 

Equation (3.2) can be represented in the form of a system in terms of invariants 

It follows from (3.9) that the plus characteristics coincide with electric current 
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lines, while the minus characteristics coincide with the electric field lines and are 
straight lines, The equations of singular solutions (3.4) for the considered model can 
be integrated. Taking into account (3. 9) we obtain the first singular solution 

i = O+(y - @>, iy = P!31’,, i” = ir2 + iy” 

where p = con& The second singular solution is 

y-s x = CD_ (j,), j2 = const exp 
( 

- g arctg q 
) 

The wave profile defined by solution (3.11) remains undistorted and current lines are 

parallel (solution of the kind of current filament with arbitrary current distribution in 
the filament). In the particular case of centralized wave (a_ 5 0) of the second 
singular solution the current lines have the form of exponential spirals. Another me- 
thod was used in [4,5] for obtaining this solution 

fx” + Y2 = con& exp 
( 
& arctg % 

) 

When Q-too the singular solution (3.13) coincides with the particular case of the 
general solution (3.8). The arbitrary current distribution in the filament in solution 

(3.11) is valid for the considered model (it is not generally valid, as can be tested by 
the direct substitution of (3.11) into (3.1) ). 

4. Let us consider a channel that is unbounded in the direction of the x and 
z -axes and bounded along the y -axis by two electrodes (0 < y < 1, --oO 
< x ( +oo) The electrodes are under a difference of potentials V. 

a b 

Fig. 1 

The external expansion region occupies almost the whole channel, except the narrow 
(of order A ) regions of the boundary layer adjoining the electrodes. When 6t < 9, 

the only continuous solution in the external expansion 
region is homogeneous ; its current lines are shown in 

Fig. 1, a. If 52 > a_ the homogeneous solution is 
unstable, and nonhomogeneous continuous solutions of 

system (3.2) may appear beside it. Such solutions 
represent homogeneous regions separated by a layer 

wave (Figs. 1, b and c). Depending on the number 

of parameters these waves can be separated in two 

a b 
classes: one-parametric and two-parametric Fig. 1, 
b and c. In the first case the structure is determined 

Fig. 2 by a single linear dimension for instance by the 



Solutions of equations for nonequilibrium magnetized plasma 773 

parameter 1 which is related to the difference of potentials y by formula 

1= 
v - (ia co5 ya)-’ 

il (ol co9 y$l- in (aa co.9 1)2)-l 

where jl, (I19 Yl, 12, =a, and us are, respectively, the cur- 
rent density, the coefficient of electrical conductivity, and the angle between the cur- 
rent vector and the y -axis up- and downstream of the ionization wave. Since the 
two-parametric structures (Fig. 1, c) are defined by one more parameter besides I 

for instance by the width of the central current filament, hence the two-parametric 

nonhomogeneous solution is not unique. The obtained here structures (Figs 1, b and c) 
differ from those considered in [le]. Nonhomogeneous solutions exist in the specific 
intervali (a, cos yi)-’ < V < js(a, cos ys)-lof variation of V , with the current 

flowing through a unit of the electrode surface constant and equal ii COS Yl. 
For some plasma compositions and Q > Q_ solutions containing standing waves, 

whose plane is parallel to that of the electrode (current lines are shown in Figs. 2, a 
‘and b), may occur in a particular range of electrode voltage. In such case nonhomo- 
geneous solution of two kinds, viz. symmetric about the channel centre (Fig. 2, a) and 

nonsymmetric (Fig. 2, b) may appear besides the homogeneous solutions. Nonhomo- 
geneous solutions with moving waves may also be present. Results presented in [11] 
make it possible to assume that waves corresponding to the auto-oscillation mode may 

develop on the background of furrent filaments, since the latter can be considered as 
channels with nonconducting walls. 

Authors thank the participants of the seminar conducted by G. A. Liubimov for discus- 
sing this paper. 
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SOLUTION OF THE FIRST ORDER QUASI-LINEAR EQUATION 

THAT DEFINES THE EVOLUTION OF PLASMA TURBULENCE 
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G. L. STENCHIKOV 

( MOSCOW ) 
( Received January 16, 1976 ) 

An asymptotic solution of the Cauchy problem is obtained for the first order 

quasi-linear equation. The field of characteristic curves is constructed. It 
is shown that for fairly considerable times the solution is discontinuous, but 
tends to a smooth stationary distribution. Numerical calculations obtained 

by the method of characteristics are presented. Results of the asymptotic and 

numerical analysis are in good agreement. 


